The Challenges of Reproducibility in **Data-Scarce Fields**

Christine L. Borgman

Distinguished Professor and Presidential Chair in Information Studies University of California, Los Angeles http://christineborgman.info @scitechprof

Peter T. Darch

Assistant Professor School of Information Sciences University of Illinois at Urbana-Champaign

DataONE Webinar, May 9, 2017

https://www.dataone.org/webinars/challenges-reproducibility-datascarce-fields

Ashley Sands

Milena Golshan

Data sharing policies

- European Union
- U.S. Federal research policy
- Research Councils of the UK
- Australian Research Council
- Individual countries, funding agencies, journals, universities

Supported by wellcometrust

Australian Government

National Health and Medical Research Council

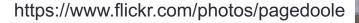
National Science Foundation WHERE DISCOVERIES BEGIN

Why Share Research Data?

- To reproduce research
- To make public assets available to the public
- To leverage investments in research
- To advance research and innovation

Christine L. Borgman

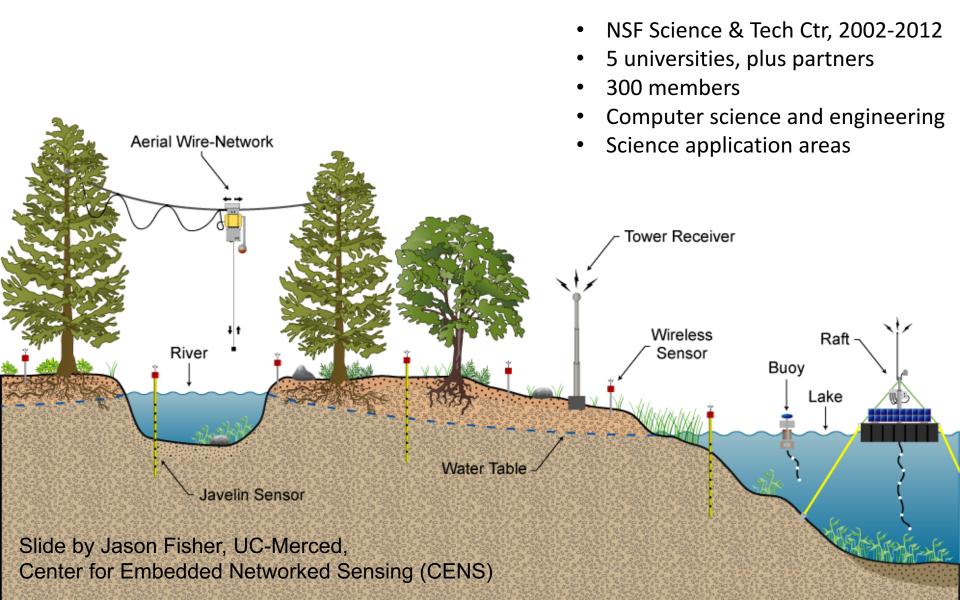
MIT Press, 2015


Lack of incentives to share data

- Rewards for publication
- Effort to document data
- Competition, priority
- Control, ownership

Why Reuse Research Data?

- To reproduce research
- To replicate research
- To verify or validate research
- To integrate with other data



y/

Center for Embedded Networked Sensing

Documenting Data for Interpretation

Engineering researcher: *"Temperature is temperature."*

CENS Robotics team

Biologist: "There are hundreds of ways to measure *temperature.* 'The temperature is 98' is low-value compared to, 'the temperature of the surface, measured by the infrared thermopile, model number XYZ, is 98.' That means it is measuring a proxy for a temperature, rather than being in contact with a probe, and it is measuring from a distance. The accuracy is plus or minus .05 of a degree. I [also] want to know that it was taken outside versus inside a controlled environment, how long it had been in place, and the last time it was calibrated, which might tell me whether it has drifted.."

Data are representations of observations, objects, or other entities used as evidence of phenomena for the purposes of research or scholarship.

C.L. Borgman (2015). *Big Data, Little Data, No Data: Scholarship in the Networked World*. MIT Press

http://www.genome.gov/dmd/img.cfm?node=Photos/Graphics&id=85327

If Data Sharing Is the Answer, What Is the Question?

- Goals
 - Explicate data, sharing, reuse, openness, infrastructure across scientific domains
 - Identify new models of scientific practice
- Dimensions
 - Mixtures of domain expertise
 - Factors of scale
 - Centralization of data collection and analysis

Qualitative Methods

- Document analysis
 - Public and private documents and artifacts
 - Official and unofficial versions of scientific practice
- Ethnography
 - Observing activities on site and online
 - Embedded for days or months at a time
- Interviews
 - Questions based on our research themes
 - Compare multiple sites over time

Current Research Sites

Domain	Focus	Торіс
Astronomy sky surveys	Place: sky and universe	Survey of night sky
Deep subseafloor biosphere	Place: under ocean floor	Microbial life and environment
Biomedical collaboration	Problem: data sharing and reuse in an interdisciplinary context	Genomics of four model organisms
Computational science	Problem: Data analysis at scale	Computing in physical and life sciences
Astronomy phenomena	Place: sky and universe	Orbits, black holes, gravity

Research Question 1

How do the *mixtures* of domain expertise influence the collection, use, and reuse of data – and vice versa?

Domain

Astronomy sky surveys

Deep subseafloor biosphere

Biomedical research

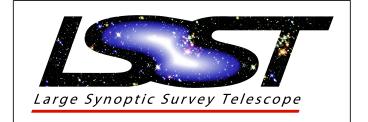
Computational science

Astronomy phenomena

UCLA Center for Knowledge Infrastructures

Sloan Digital Sky Survey (SDSS-I/II)

- Survey from 2000-2008
- 160+ TB data total
- Tens of millions of dollars
- Open data
- Proprietary software


Telescope for the Sloan Digital Sky Survey, Apache Point, New Mexico

Large Synoptic Survey Telescope (LSST)

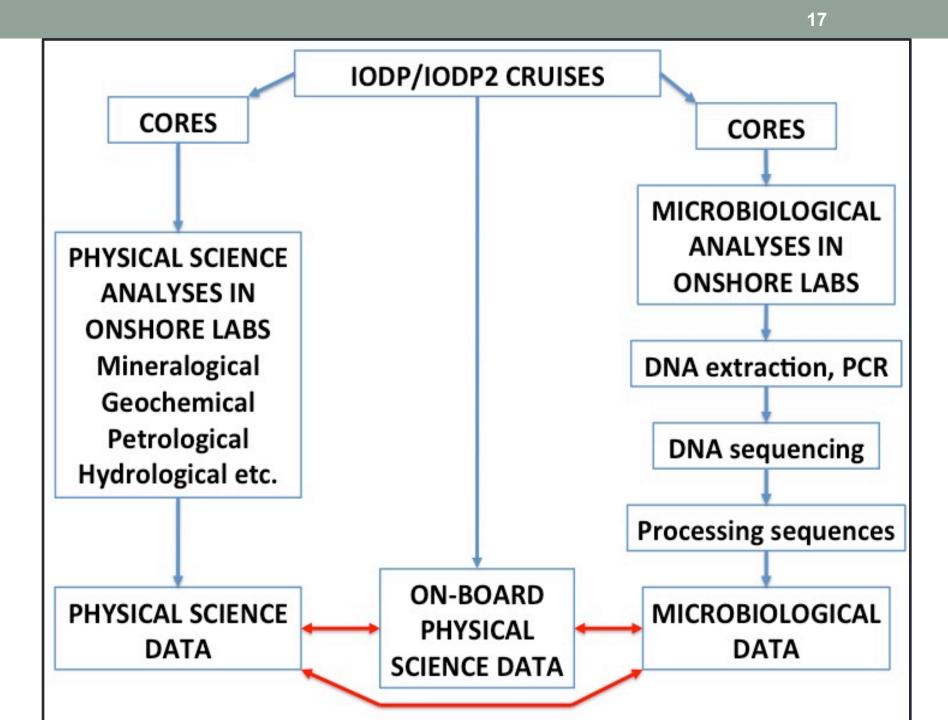
- Survey from 2022-2032
- 15 TB data per night
- 1+ Billion dollars
- Data open to partners
- Open source software

14

Mixtures: Astronomy sky surveys

- Domains
 - Astronomy, physics
 - Computer science
- Project characteristics
 - Mature discipline
 - Abundant data
 - Trusted archives
 - Shared tools, methods
 - Established infrastructure for data access and use

Center for Dark Energy Biosphere Investigations


International Ocean Discovery Program Iodp.tamu.org

- NSF Science & Tech Ctr, 2010-2020
- 35 institutions
- 90 scientists
- Biological sciences
- Physical sciences

Repository for seafloor cores. Photo: Peter Darch

Mixtures: Deep subseafloor biosphere

- Domains
 - Biological sciences
 - Physical sciences
 - 50+ self-identified specialties
- Project characteristics
 - Emergent scientific problem area
 - Scarce data
 - Disparate, exploratory methods
 - Building capacity for data collection
 - Sharing established infrastructures

Research Question 2

What *factors of scale* influence research practices, and how?

Domain

Astronomy sky surveys

Deep subseafloor biosphere

Biomedical research

Computational science

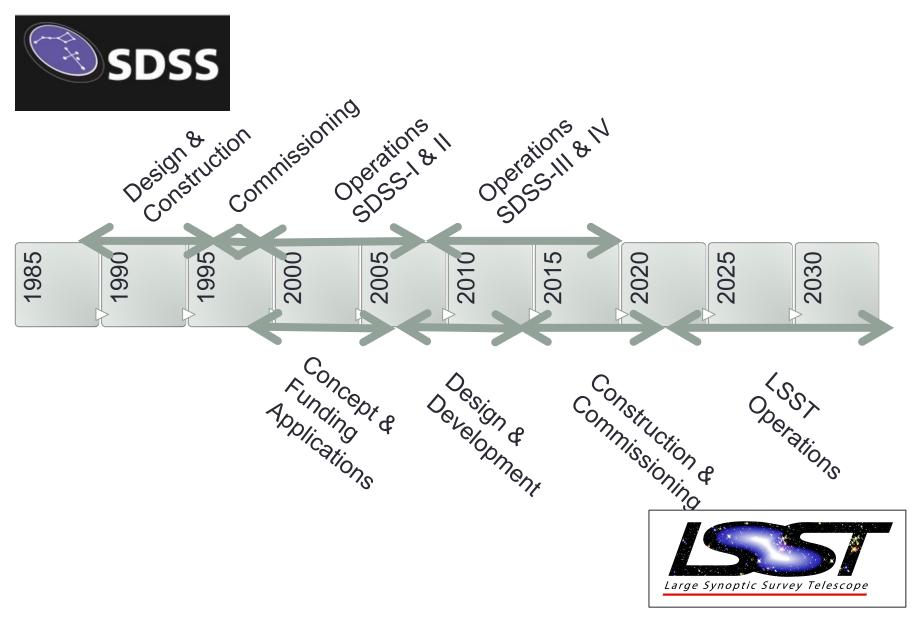
Astronomy phenomena

UCLA Center for Knowledge Infrastructures

Scale factors

- Temporal
- Spatial
- Personnel

Data Size


Volume

Soeed or Change or

http://www.datameer.com/product/hadoop.html

Data ces Sources

Project Timelines

Scale factors

Research site	Scale factors
Astronomy sky surveys	Uncertainty due to long temporal frame; paradigm shifts
Deep subseafloor biosphere	Scarce data are sparse data; high variety; difficult to standardize
Biomedical research	High variety in genomes studied, models, methods, duration of analysis; difficult to standardize
Computational sciences	High variety in data, methods, tool expertise; difficult to standardize

Research Question 3

How does the degree of *centralization of data collection and analysis* influence use, reuse, curation, and project strategy? Domain

Astronomy sky surveys

Deep subseafloor biosphere

Biomedical research

Computational science

Astronomy phenomena

UCLA Center for Knowledge Infrastructures

Centralization factors

Research Site	Centralization factors
Astronomy sky surveys	Centralized data collection and initial processing; decentralized use and analysis
Deep subseafloor biosphere	Common data source, shared repositories of cores; decentralized analysis
Biomedical research	Decentralized data collection; efforts to integrate data for centralized analysis reveal lack of commonalities
Computational sciences	Decentralized data collection; efforts to integrate data for centralized analysis reveal lack of commonalities

REPRODUCIBILITY IN THE DEEP SUBSEAFLOOR BIOSPHERE

Peter T. Darch, School of Information Sciences, University of Illinois at Urbana-Champaign


DataONE Webinar, May 9, 2017

Center for Knowledge Infrastructures

JCLA

26

NATURE | NEWS FEATURE

1,500 scientists lift the lid on reproducibility

Survey sheds light on the 'crisis' rocking research.

Monya Baker

25 May 2016 | Corrected: 28 July 2016

http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

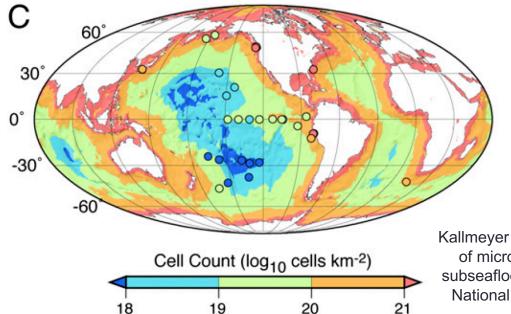
Reproducibility

- Reproducing an analysis requires access to:
 - Data
 - Methods
 - Source code
 - Workflows
- Access means:
 - Availability
 - Usability
 - Interpretability

Deep Subseafloor Biosphere

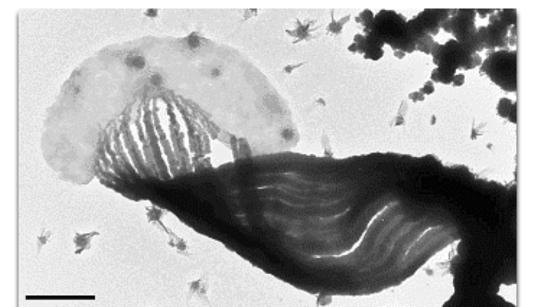
- Microbial communities in the seafloor
- Highly-multidisciplinary
- Center for Dark Energy Biosphere Investigations (C-DEBI)
 - 10-year NSF Science and Technology Center
- International Ocean Discovery Program (IODP)

http://iodp.org/expeditions

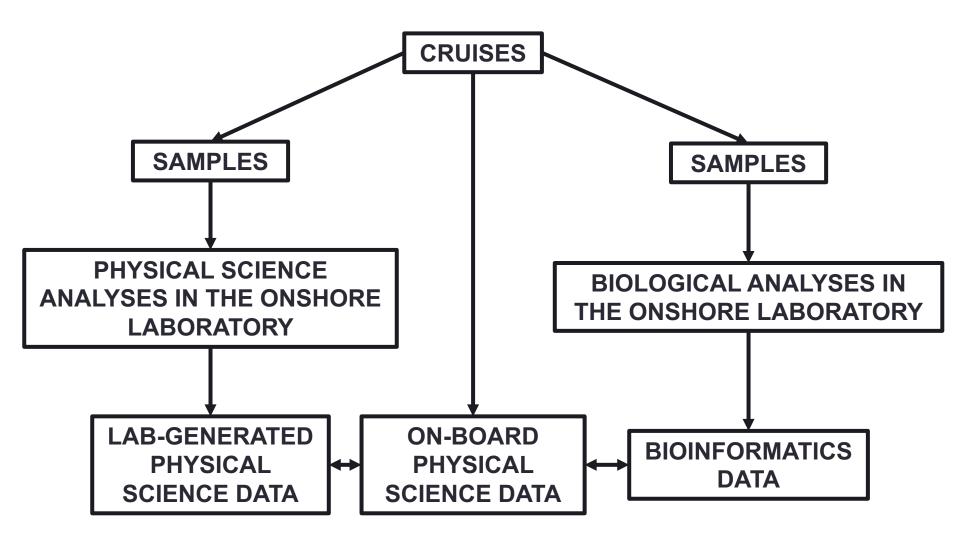

Subseafloor Biosphere: Data-Scarce Domain

- "Data scarce" vs. "data abundant"
- Objectives of domain scientists
 - Address current scientific debates
 - Transition from "discovery-driven" to "hypothesis-driven" science
- Access to data is limited
 - Domain's relative newness
 - IODP resources are shared with other domains

Benefits of Data Reuse


- Improve access to data for researchers
- Build better reference collections for multiple domains
- Answer key questions in microbiology
 - Baas-Becking hypothesis
 - Global distribution of microbes

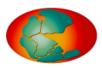
Kallmeyer et al. (2012). Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences, 109(40), 16213–16216.


Reproducibility vs. Reuse

- Reuse is more effective strategy in data-scarce domains
- Heterogeneous data types complicate reproducibility
- Sharing for reuse affects researchers' relationships in a different way to sharing for reproducibility

sites.google.com/site/adopta microbe/home

Data Diverge During Scientific Work


Reproducibility when Data Diverge

- Reproducibility requires access to:
 - Bioinformatics data
 - Physical science data
- Different types of data can be:
 - Subject to different policies for curation
 - Deposited in different databases

These differences inhibit access and integration of data

Data Publisher for Earth & Environmental Science

Goals for Sharing and Reusing Data

- Nurturing personal relationships is critical for the domain
 - Domain is in the early stages of establishing itself
 - Domain is relatively small
 - Domain is highly-distributed
- Exchanges of data and software can affect relationships

Sharing for reuse	Sharing for reproducibility
Links researchers together	Links researchers together
Allows researchers to display good faith in each other	Can imply mistrust in competence or good faith of other researchers
Reinforces positive collaborative relationships	Uncertain effect on collaborative relationships

Implications for Data Scarce Environments

- Data-scarce domains experience good pay-offs from data reuse
- Barriers to reproducibility emerge early in the scientific process
- A focus on reproducibility may obscure data reuse opportunities
- Reproducibility goals may inhibit scientific progress in datascarce domains

http://iodp.org/expeditions

35

Acknowledgements

- C-DEBI and IODP personnel who participated in our research
- Sloan Foundation (Awards #20113194, #201514001)
- Other members of the Center for Knowledge Infrastructures at UCLA: Milena Golshan, Irene Pasquetto, Bernie Randles; past members: Ashley Sands, Sharon Traweek

http://knowledgeinfrastructures.gseis.ucla.edu

And thank you for listening