
Software Carpentry:
Lessons Learned

Greg Wilson



2

Then

Anatole France (1844-1924)

“The law, in its majestic equality, forbids
the rich and poor alike to sleep under
bridges, to beg in the streets, and to
steal bread.”



3

Now

Anatole France (1844-1924)

“The law, in its majestic equality, forbids
the rich and poor alike to sleep under
bridges, to beg in the streets, and to
steal bread.”

Today, thanks to computers,
every scientist can devote her working life

to getting software installed.



4

5-15% 85-95%

GPU clusters to
analyze petabytes

in the cloud

Sending each other
spreadsheets

by email



5

Surely You're Exaggerating

1. How many graduate students write shell
scripts to analyze each new data set
instead of running those analyses by hand?



6

Surely You're Exaggerating

2. How many of them use version control
to keep track of their work and collaborate
with colleagues?



7

Surely You're Exaggerating

3. How many routinely break large problems
into pieces small enough to be
- comprehensible,
- testable, and
- reusable?



8

Surely You're Exaggerating

3. How many routinely break large problems
into pieces small enough to be
- comprehensible,
- testable, and
- reusable?
And how many know those are the
same things?



9

Goalposts

A computationally competent scientist can:

● Manage and process data

● Tell if it's been processed correctly

● Find and fix problems when it hasn't been

● Keep track of what she has done

● Share her work with others

Efficiently



10

It Is Therefore Obvious That...

● Put more computing courses in the curriculum!

● But it's already full



11

It Is Therefore Obvious That...

● Put a little computing in every course!

● 5 minutes/lecture = 4 courses/degree
● First thing cut when running late



12

It Is Therefore Obvious That...

● And no matter what we do...

● The blind leading the blind



13



14

If you build a man a fire,
you'll keep him warm for a night.

If you set a man on fire,
you'll keep him warm for the rest of his life.

— Terry Pratchett



15

What We Teach

Unix shell

Version control

Python/R/MATLAB

SQL

Make



16

What We Actually Teach

Unix shell => Task automation

Version control => Track and share work

Python/R/MATLAB => Modular programming

SQL => Data management

Make => Reproducibility



17

How It's Going

0

100

200

300

400

500

600

Workshops



18

How It's Going

Workshops



19

How It's Going

Learners

20
11

-1
1-

07

20
12

-0
5-

16

20
12

-1
0-

08

20
12

-1
1-

30

20
13

-0
2-

06

20
13

-0
4-

18

20
13

-0
5-

30

20
13

-0
7-

18

20
13

-0
9-

21

20
13

-1
1-

14

20
14

-0
1-

18

20
14

-0
2-

24

20
14

-0
4-

29

20
14

-0
6-

16

20
14

-0
7-

19

20
14

-0
8-

23

20
14

-0
9-

24

20
14

-1
1-

07

20
14

-1
2-

18

20
15

-0
1-

29

20
15

-0
3-

02

20
15

-0
3-

30

20
15

-0
4-

29

20
15

-0
6-

04

20
15

-0
6-

29

20
15

-0
8-

03

20
15

-0
9-

06

20
15

-1
0-

01
0

2000

4000

6000

8000

10000

12000

14000

16000

18000



20

How It's Going

Instructors

20
12

-0
5-

27

20
13

-0
7-

20

20
13

-1
1-

17

20
14

-0
4-

19

20
14

-0
7-

07

20
14

-0
8-

07

20
14

-1
0-

03

20
14

-1
1-

05

20
14

-1
1-

13

20
14

-1
1-

20

20
14

-1
1-

27

20
14

-1
2-

13

20
15

-0
1-

07

20
15

-0
2-

06

20
15

-0
3-

01

20
15

-0
3-

12

20
15

-0
4-

20

20
15

-0
5-

26

20
15

-0
6-

12

20
15

-0
6-

26

20
15

-0
7-

05

20
15

-0
7-

10

20
15

-0
7-

14

20
15

-0
7-

28

20
15

-0
9-

02

20
15

-0
9-

25

20
15

-1
0-

13
0

50

100

150

200

250

300

350

400

450

500



21

How It's Going

Instructors



22

What We Learned (Version 1)

● Software engineering isn't 
appropriate for most scientists

● Week-long workshops are easy to 
schedule, but bad for learning



23

What We Learned (Versions 2-3)

● Hard to fit this into existing curricula
● Hard to convince Computer Science 

departments to care



24

What We Learned (Version 4)

● Videos aren't cost-effective
● “It's the maintenance, stupid”



25

And Now... Version 5

● Instructor training creates community
● Collaborative lesson development
● Early joiners are atypical



26

And Now... Version 5

● Every partner has different needs
● People would rather argue about 

technology than pedagogy



27

And Now... Version 5

● Never teach alone
● Learners use their own machines
● Live coding



28

And Now... Version 5

● Sticky notes
● Collaborative note taking
● Debriefing



29

And Now... Version 5

● Iterate
● Iterate
● Iterate



30

Why People Volunteer

● Make the world a better place
● Self-defense
● Learn this stuff themselves
● Make new friends
● Boost their careers



31

Learning About Learning



32

A Puzzle

● Thousands contribute 
patches to open source 
software projects

● Millions have edited 
Wikipedia

● Why don't people build 
lessons this way?



33

All Together Now

● 187 contributors to our lessons in 
the run-up to publication

● A culture of contribution



34

The Model Transfers

● Domain-specific lessons
● Shared instructor pool
● Next: librarians, humanities, ...



35

Why You Should Care

● Make scientists more productive
● A new model for curriculum 

development
● Give everyone a 

say in shaping 
21st Century 
science



36

How You Can Help

● Come learn
● Host a workshop
● Become an instructor
● Contribute to our 

lessons
● Build tools



37

http://software-carpentry.org

Thank You


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

