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Then

Anatole France (1844-1924)

“The law, in its majestic equality, forbids
the rich and poor alike to sleep under
bridges, to beg in the streets, and to
steal bread.”
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Now

Anatole France (1844-1924)

“The law, in its majestic equality, forbids
the rich and poor alike to sleep under
bridges, to beg in the streets, and to
steal bread.”

Today, thanks to computers,
every scientist can devote her working life

to getting software installed.
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5-15% 85-95%

GPU clusters to
analyze petabytes

in the cloud

Sending each other
spreadsheets

by email
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Surely You're Exaggerating

1. How many graduate students write shell
scripts to analyze each new data set
instead of running those analyses by hand?
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Surely You're Exaggerating

2. How many of them use version control
to keep track of their work and collaborate
with colleagues?
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Surely You're Exaggerating

3. How many routinely break large problems
into pieces small enough to be
- comprehensible,
- testable, and
- reusable?
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Surely You're Exaggerating

3. How many routinely break large problems
into pieces small enough to be
- comprehensible,
- testable, and
- reusable?
And how many know those are the
same things?
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Goalposts

A computationally competent scientist can:

● Manage and process data

● Tell if it's been processed correctly

● Find and fix problems when it hasn't been

● Keep track of what she has done

● Share her work with others

Efficiently
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It Is Therefore Obvious That...

● Put more computing courses in the curriculum!

● But it's already full
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It Is Therefore Obvious That...

● Put a little computing in every course!

● 5 minutes/lecture = 4 courses/degree
● First thing cut when running late
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It Is Therefore Obvious That...

● And no matter what we do...

● The blind leading the blind
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If you build a man a fire,
you'll keep him warm for a night.

If you set a man on fire,
you'll keep him warm for the rest of his life.

— Terry Pratchett
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What We Teach

Unix shell

Version control

Python/R/MATLAB

SQL

Make
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What We Actually Teach

Unix shell => Task automation

Version control => Track and share work

Python/R/MATLAB => Modular programming

SQL => Data management

Make => Reproducibility
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How It's Going
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How It's Going

Workshops
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How It's Going

Learners
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How It's Going

Instructors
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How It's Going

Instructors
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What We Learned (Version 1)

● Software engineering isn't 
appropriate for most scientists

● Week-long workshops are easy to 
schedule, but bad for learning
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What We Learned (Versions 2-3)

● Hard to fit this into existing curricula
● Hard to convince Computer Science 

departments to care
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What We Learned (Version 4)

● Videos aren't cost-effective
● “It's the maintenance, stupid”
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And Now... Version 5

● Instructor training creates community
● Collaborative lesson development
● Early joiners are atypical
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And Now... Version 5

● Every partner has different needs
● People would rather argue about 

technology than pedagogy
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And Now... Version 5

● Never teach alone
● Learners use their own machines
● Live coding
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And Now... Version 5

● Sticky notes
● Collaborative note taking
● Debriefing
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And Now... Version 5

● Iterate
● Iterate
● Iterate
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Why People Volunteer

● Make the world a better place
● Self-defense
● Learn this stuff themselves
● Make new friends
● Boost their careers



31

Learning About Learning
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A Puzzle

● Thousands contribute 
patches to open source 
software projects

● Millions have edited 
Wikipedia

● Why don't people build 
lessons this way?
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All Together Now

● 187 contributors to our lessons in 
the run-up to publication

● A culture of contribution
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The Model Transfers

● Domain-specific lessons
● Shared instructor pool
● Next: librarians, humanities, ...



35

Why You Should Care

● Make scientists more productive
● A new model for curriculum 

development
● Give everyone a 

say in shaping 
21st Century 
science
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How You Can Help

● Come learn
● Host a workshop
● Become an instructor
● Contribute to our 

lessons
● Build tools
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http://software-carpentry.org

Thank You
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